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Section S1. Literature search: about biobanks and biobanking and biobank-based research 
 

In this section, we describe the methods used to identify and classify recent literature based 
on major biobanks. A preliminary search of biobanks was conducted as described in Figure S1. 
First, a university-sponsored database was searched for papers on biobanks and papers published 
using biobank data. Second, we compiled a short list of biobanks and searched their websites for 
biobank-promoted research articles. These papers were read to identify various topics for search 
terms. We identified the following topic areas: study design and cohort characteristics, ethics and 
public perception, feasibility and implementation, treatment or therapies, genetic analyses (e.g. 
GWAS/PheWAS), and non-genetic of biobank data. 

PubMed was the primary database used. We searched for various combinations of terms 
related to the topic areas we identified as well as the names of specific biobanks. Papers promoted 
on biobank websites were also included. Papers from these searches were included if they (a) 
analyzed data from a biobank (genetic or non-genetic), (b) were published about a specific 
biobank, or (c) were published about biobanks in general. Papers were excluded if they were not 
in English, but we placed no restrictions on date of publication (while there was a preference for 
more recent publications) or geographic region. A subsequent search was conducted focusing 
solely on papers published using biobank data (particularly biobanks linked with EHR) and 
performing a genetic analysis. Preference was given to studies where genotype data was analyzed 
(largely GWAS/PheWAS). The publication search was concluded June 1, 2018. 

We would like to emphasize that this is not intended to be an exhaustive list of all biobank-
related literature. It was, however, intended to provide a good understanding of the state of biobank 
literature in general. 

Figure S1: Paper Identification Algorithm 
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exploration of treatments and therapies, (5) epidemiologic exploration focused on non-genetic 
data, and (6) epidemiologic exploration using genetic data. Below, we review papers in these six, 
broad categories in more detail.  

 
Study Design and Cohort Characteristics 

Biobanks typically publish papers on study design,1–3 cohort characteristics,3–8 how the 
cohort differs for the rest of the country’s population,9 and characteristics of specific patient 
populations (e.g. clinical characteristics of colorectal10 and prostate11 cancer patients in the 
BioBank Japan cohort). This information is critical for determining generalizability of results 
obtained using biobank data. Moreover, these manuscripts are of particular interest to statisticians 
as they describe the scope of the data and highlight key considerations that have implications for 
data analysis and interpretation. 

 
Ethics and Public Perception 

Attention has been given to ethics of biobanks, particularly to ethical and legal concerns12 
with the use of broad consent (seeking consent for future unspecified research) and to the use of 
opt-out consents in biobanks with plans for broad, long-term use.13,14 Additionally, research has 
looked at public perception of biobanks and biobanking,15 identified areas of reluctance for 
potential subjects to consent, and gathered general thoughts on medical and epidemiological 
research. While hurdles exist (including concerns about privacy and confidentiality, benefit-
sharing and commercialization, and internationalization), there is evidence from Germany16 and 
China17 that there is general public support for biobanks and large-scale cohort studies. 

 
Feasibility and Implementation 

Literature about biobanks explores feasibility and implementation for establishing 
biobanks, including business plans and models for facilitating biobank creation,18 how to recruit 
and obtain consent (particularly among particular groups of patients such as cancer patients),19–21 
and the use of electronic consent in biobanking.22 Increasingly, biobanks are augmenting their 
survey data with EHR data. The promise and utility of EHR data for secondary research use has 
been well-established.23,24 Research into EHR data quality suggests a need for standardized 
methods of EHR data quality assessment25 and awareness of underlying data collection 
processes.26  

 
Scientific Studies of Health-Related Outcomes 

The vast majority of emerging biobank-based literature focuses on studying health-related 
outcomes. One area of exploration involves comparisons or characterizations of different 
treatments or therapies. For example, Ramirez et al. (2012) examined the impact of genetic 
variants in European-Americans and African-Americans on the response to different warfarin 
dosages.27  EHR-linked biobank data, particularly those linked with prescription claims data, are 
well positioned to explore treatment or therapy related outcomes, treatment repurposing, and gene-
by-treatment interactions.  

Other studies use biobank data to perform epidemiologic analyses using available EHR 
and/or supplemental survey data.5,28–50 We group these papers published using biobank data into 
two coarse categories: genetic and non-genetic analyses. Examples of non-genetic analyses 
include Song et al. (2018), where the authors describe the protective nature of alcohol consumption 
on coronary artery disease risk in the Million Veterans Program, and Peters et al. (2018), where 
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they highlight sex differences in the association between measures of general and central adiposity 
and risk of myocardial infarction in the UKB.39,44 Pilling et al. (2017) is an example of a genetic 
study, where the authors conducted a GWAS of UKB data to identify 25 loci associated with 
human longevity.51 In a recent paper, Nielsen et al. (2018) used biobank data to explore the 
relationship between genetics and atrial fibrillation.52  
 

Figure S2 provides a distribution of included biobank-based publications falling into each 
of the above categories over time. The rise in the number of genetic studies can be partly explained 
by the increase in the number of GWAS and PheWAS. GWAS use genotype data, typically from 
a large number of individuals, to relate millions of genetic variants with a given disease/health 
condition, and biobanks often contain upwards of several hundred thousand individuals. 
Additionally, many biobanks have linked the genotype data to EHR, which allows for in-depth 
phenotyping and, thus, the feasibility of relating millions of genetic variants with hundreds of 
diagnoses and lab tests, leading to exploration of the genome x phenome landscape through 
PheWAS.  

While the overall number of biobank-related papers has been increasing rapidly, it is worth 
exploring the number and types of publications produced by individual biobanks, which may 
depend on the kinds of data available and their willingness to share data externally. Table S1 
details the types of identified papers associated with several prominent biobanks. UKB is 
associated with a large number of publications and particularly papers involving genetic data, 
which can be explained by external data accessibility and the presence of high-quality genetic 
information on a large number of patients. In studies conducted using data from other biobanks, 
UKB data is often chosen as a validation dataset. A discussion regarding some of the more 
common health-related outcomes studied using biobank data can be found in Supplementary 
Section S2. 

 
Figure S2. Overall Distribution of Selected Biobank-Based Publications by Year and Type 
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Table S1: Identified Publications by Major Biobanks Included in this Paper 
Biobank # in review % Pre-2014 2014 2015 2016 2017 2018 
UK Biobank 58 39% 0 0 2 1 24 31 
BioVU 8 5% 6 0 0 0 1 1 
BioBank Japan 6 4% 0 0 0 0 6 0 
Guangzhou Biobank Cohort 
Study 6 4% 5 1 0 0 0 0 

HUNT 3 2% 2 0 0 0 0 1 
China Kadoorie Biobank 3 2% 1 0 0 0 0 2 
Michigan Genomics Initiative 2 1% 0 0 0 0 0 2 
Million Veterans Program 1 1% 0 0 0 0 0 1 
Other biobanks 15 10% 1 2 1 1 6 4 
Meta-analysis combining multiple 
biobanks 24 16% 0 1 0 0 13 10 

About biobanks/biobanking 23 15% 10 4 1 2 2 4 
TOTAL 149 100% 25 8 4 4 52 56 
Note: This table contains papers identified using the described literature search methods, but it is not 
intended to be an exhaustive list of publications from each biobank. Papers were assigned to a biobank if 
that biobank's data was used in the paper's primary analysis. 

 
Section S2. Common Outcomes in Biobank Research  

While data in large biobanks allow researchers to examine a broad array of outcomes (and 
often many at once), psychiatric/neurologic outcomes, cardiovascular disease, obesity/diabetes, 
cancer, and pulmonary conditions dominate recent biobank-based research. Common psychiatric 
and neurologic outcomes include risk-taking behavior, depression/major depressive disorder, 
Alzheimer’s disease, anxiety, schizophrenia, and bipolar disorder. These outcomes are ascertained 
by either diagnosis codes or survey responses, and different definitions and thresholds are used in 
sensitivity analyses. Similarly, cardiovascular disease outcomes include coronary artery 
disease/coronary heart disease, which are defined as a combination of more specific conditions 
including myocardial infarction. Related conditions like stroke, atrial fibrillation and calcific aortic 
valve stenosis have also been explored in the literature. Obesity (and related measurements like 
BMI and waist-to-hip ratio) and diabetes have also been explored. Colorectal, breast, lung, 
pancreatic, and skin cancers as well as pulmonary conditions including smoking and airflow 
obstruction have been investigated, but to a lesser extent. Abbreviated citations of papers reporting 
the outcomes discussed here are presented in Table S2. 

While psychiatric/neurologic conditions, cardiovascular disease, obesity, cancer, and 
pulmonary conditions are responsible for a significant portion of morbidity and mortality, the 
breadth and depth of EHR-linked biobank data offer a valuable resource to research many other 
rare and chronic diseases and conditions as well as risk factors and health behaviors. As such, there 
is great opportunity for future explorations into health outcomes using EHR-linked biobank data. 
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Table S2. Common Outcomes in Biobank Research 

Outcome Papers 
Cancer   
   Breast Anderson et al. 2018; Abana et al. 2017; Hoffman et al. 2017 

   Colorectal Morris, Bradbury, Cross, Gunter & Murphy 2018; Usher-Smith et al. 2018 

   Lung Hatlen, Grønberg, Langhammer, Carlsen & Amundersen 2011 

   Pancreatic van Duijnhoven et al. 2018 

   Skin Fritsche et al. 2018 

Cardiovascular disease   
   Atrial fibrillation Li et al. 2018; Nielsen et al. 2018; Tikkanen et al. 2018; Ritchie et al. 2010 

   Calcific aortic valve stenosis Thériault et al. 2018 

   Coronary artery disease/ 
   coronary heart disease* 

Deary et al. 2018; Peters, Bots & Woodward 2018; Song et al. 2018; van der Harst & 
Verweij 2018; Wood et al. 2018; Chan et al. 2017; Klarin et al. 2017; Liu, Erlich, & 
Pickrell 2017; Lyall et al. 2017; Nelson et al. 2017; Warren et al. 2017; Hagenaars et al. 
2016; Jiang et al. 2010 

   Stroke Malik et al. 2018; Rutten-Jacobs et al. 2018; Lee et al. 2017 

Diabetes/Obesity Astley et al. 2018; Beaumont et al. 2018; Gill et al. 2018; Peters, Bots & Woodward 
2018; Turcot et al. 2018; van Zon et al. 2018; Zegnini et al. 2018; Emdin et al. 2017; 
Klarin et al. 2017; Liu, Erlich, & Pickrell 2017; Lyall et al. 2017; Márquez-Luna, Loh & 
Price 2017; Paré, Mao, & Deng 2017; Rask-Andersen et al. 2017; Tachmazidou et al. 
2017; Tyrrell et al. 2017; Zhao et al. 2017; Cronin et al. 2014; Arora et al. 2011 

Psychiatric/Neurologic   
   Alzheimer's diseases Deary et al. 2018; Gibson et al. 2017; Lin et al. 2017; Smeland et al. 2017; Hagenaars et 

al. 2016 

   Anxiety Strawbridge et al. 2018; Du Rietz et al. 2017; Ward et al. 2017 

   Bipolar disorder Deary et al. 2018; McElroy et al. 2018; Strawbridge et al. 2018; Clarke et al. 2017; 
Croarkin et al. 2017; Reus et al. 2017; Ward et al. 2017; Hagenaars et al. 2016 

   Depression Deary et al. 2018; Hall et al. 2018; Howard et al. 2018; Rutten-Jacobs et al. 2018; 
Strawbridge et al. 2018; Gibson et al. 2017; Howard et al. 2017; Reus et al. 2017; Ward 
et al. 2017; Wigmore et al. 2017; Hagenaars et al. 2016 

   Risk-taking behavior Strawbridge et al. 2018; Du Rietz et al. 2017 

   Schizophrenia Deary et al. 2018; Strawbridge et al. 2018; Reus et al. 2017; Ward et al. 2017; 
Hagenaars et al. 2016 

Pulmonary-related outcomes   
   Airflow obstruction Amaral, Strachan, Burney & Jarvis 2017; Wain et al. 2017; Lam et al. 2010 

   Smoking Taylor et al. 2018; Amaral, Strachan, Burney & Jarvis 2017; Bjørngaard et al. 2017; 
Jiang et al. 2010; Lam et al. 2010 

* includes myocardial infarction 
NOTES: The papers presented in this table were identified as part of the literature search (process described in Supplementary 
Section S1). We reiterate that this review of the literature is not exhaustive. The same paper may appear multiple times if it 
reports results on multiple outcomes. The papers are list by year of publication and then alphabetically by first author. 

 
  



 6 

Section S3. Characterization of attributes comparing population-based and medical center/health system-based biobanks. 
  
 In Table S3, we provide a high-level characterization of some features biobank-based researchers should consider and how 
those considerations differ between population-based and medical center/health system-based biobanks. As with the use of any 
dataset, it is important to understand the origin and protocol of the data collected and how that impacts analytical considerations. 
These observations generally apply, but there may be exceptions. 
 

Table S3. Comparison of population-based and medical center/health-system based biobanks 
  Population-based Medical Center + Health-System Based 
Target population Representative of population Varies: geographically restricted to healthcare 

system catchment area; biased towards sicker 
individuals 

Potential sources of 
selection bias 

Varies; examples include living near an 
assessment center (UK Biobank) or living in a 
region of interest (Kadoorie) 

Varies; differential ability to overcome access to 
healthcare (e.g. insured individuals, individuals 
with access to transportation) and health status 
(sicker individuals) 

EHR: Length of follow-up Longer due to access to primary healthcare 
system EHR 

Shorter: limited to interactions individual has 
with medical center/health-system 

EHR: heterogeneity Heterogeneous: complications with variables and 
different usages and definitions across EHR 

Homogeneous: ICD code usage standardized 
across EHR 

Goal Make inferences about the health of the general 
population 

Make inferences about the health of local region; 
identify associations with sicker individuals 

Examples UK Biobank, China Kadoorie MGI, BioBank Japan 
Abbreviations: EHR, electronic health record; ICD, international classification of disease; MGI, Michigan Genomics Initiative 
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Section S4. Description of MGI Patients 
 
 In this section, we provide some brief descriptions of the patient populations in used in this 
study. We note that we restrict our attention to unrelated subjects of recent European ancestry in 
MGI . We estimated the length of follow-up using the first and last days in which a subject received 
an ICD code, and the number of visits was defined as the number of unique days in which the 
subject received at least one phecode.  Figures S3-S5 relate the follow-up time, number of unique 
phecodes, and number of visits to gender and whether the subject received a cancer ICD code 
during follow-up. 
 
 
Figure S3: Follow-up in MGI by Gender and Receipt of Cancer ICD Code During Follow-up 

(a) By Gender (b) By Receipt of Cancer ICD Code 

  
 

Median (Females): 4.44 years 
Median (Males): 3.42 years 

 
Median (No Cancer ICD): 3.31 years 
Median (Had Cancer ICD): 4.68 years 

 
 
 
Figure S4: Number of Unique Phecodes in MGI by Gender and Receipt of Cancer ICD Code 

(a) By Gender (b) By Receipt of Cancer ICD Code 

  
 

Median (Females): 37 phecodes 
Median (Males): 32 phecodes 

 
Median (No Cancer ICD): 25 phecodes 
Median (Had Cancer ICD): 46 phecodes 

 



 8 

Figure S5: Number of Visits in MGI by Gender and Receipt of Cancer ICD Code 
(a) By Gender (b) By Receipt of Cancer ICD Code 

  
 

Median (Females): 27 visits 
Median (Males): 23 visits 

 
Median (No Cancer ICD): 17 visits 
Median (Had Cancer ICD): 38 visits 
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Section S5. Brief Description of Phenotype Generation 
 

The MGI phenome was based on the Ninth and Tenth Revision of the International 
Statistical Classification of Diseases (ICD9 and ICD10) code data for 30,702 unrelated, genotyped 
individuals of recent European ancestry. These ICD9 and ICD10 codes were aggregated to form 
up to 1,857 PheWAS traits (phecodes) using the PheWAS R package (as described in Fritsche et 
al. 2018 and Carroll et al. 2014).55,56 The UK Biobank phenome was based on ICD9 and ICD10 
code data of 408,961 genotyped white British individuals that were aggregated to phecodes in a 
similar fashion as MGI. 1,681 phenotypes (phecodes) were defined in both UKB and MGI.  

For each trait and biobank, we identified cases, subjects observed to have that trait. For a 
given trait, cases were defined as subjects receiving the corresponding phecode at least once during 
follow-up. Controls were defined as subjects not ever receiving the corresponding phecode. Note 
that this includes subjects receiving related phecodes. Cases and controls are not matched for this 
analysis. The prevalence of a particular phenotype (Figure 2) was defined as the proportion of 
subjects receiving a particular phecode in that biobank. In Figure S6, the odds ratio of having a 
particular phenotype (say, Phenotype 1) based on the value of another phenotype (say, Phenotype 
2) was computed as !" = 	 ("!!#$.&)("""#$.&)("!"#$.&)(""!#$.&)

 using notation in Figure S7. The inclusion of the 0.5 
terms helps to stabilize odds ratio estimates involving small cell counts. 

 
 

Figure S6: Log-Odds Ratios of having Melanoma Diagnosis by Other Phenotype Diagnoses* 

 
* Each point represents a phenotype in MGI and UK Biobank in a particular disease category (say 
respiratory) and the corresponding cross-classified log-odds ratios capturing the association between 
melanoma diagnosis and diagnosis of the other phenotype in MGI and UK Biobank. 1,896 women had 
observed melanoma in MGI and 2,724 women had melanoma in UK Biobank. The two lines correspond to 
equality of the estimates and a fitted line to the points. “Spearman” indicates the Spearman correlation and 
“CCC” indicates Lin’s concordance correlation coefficient, which is a measure of agreement (with 1 being 
perfect agreement). 
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Figure S7: Cross-Tabulation of Phenotypes 
 Phenotype 2 

Phenotype 1 No Yes 

No n00 n01 

Yes n10 n11 

 
While phenotypes in MGI and UKB were generated using ICD codes, future research can 

consider a broader spectrum of information when defining phenotypes. Figure S8 provides some 
examples of additional information in the EHR that may be used to define the phenome.  
 

Figure S8: Potential Data Sources for Generating the Phenome 
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Section S6. Investigating Phecode Definitions and Potential Misclassification 
 

In the process of comparing UKB prevalence estimates to published values for the UK in 
Table 2, we noticed several diseases for which the EHR-derived phenotype codes based on ICD 
codes in UKB does not appear representative. Most notably, the proportion of subjects receiving 
ICD codes for obesity in UKB is substantially smaller than the population averages and 
substantially smaller than the MGI prevalences. In this section, we briefly explore possible causes 
of this large disparity between EHR-derived phenotypes in UKB and the population averages. We 
note that the obesity phecode is usually not used in studies with obesity as a primary outcome; 
rather, researchers usually define obesity using BMI or other measures directly. However, the 
obesity phenotype may often be used in PheWAS studies considering a large number of 
phenotypes, and so it is worth exploring potential misclassification of the corresponding ICD-
based PheWAS code. 

First, we clarify the definitions of the phenotypes. The phenotypes used for the PheWAS 
and GWAS results, known as phecodes, were derived from ICD codes, but the use of ICD coding 
varies between MGI and UKB. The available diagnoses of MGI were coded according to the 
International Classification of Diseases version-9, clinical modification (ICD9-CM) until 
September 30, 2015 and according to ICD10-CM from October 1, 2015 onwards. All ICD 
diagnoses were time-stamped, and extracted temporal data were masked as days since birth. Coded 
ICD values were harmonized to match the formatting used for mapping to PheWAS codes, where 
trailing characters that are not part of a valid code were trimmed.56 

The available ICD diagnoses of the UKB were recorded using in-patient hospital 
admissions, national cancer or death registries. The ICD data was based on WHO’s ICD9 codes 
until roughly 1995 and on ICD10 codes from roughly 1995 onwards, where the ICD9 to ICD10 
transition date varied between England, Scotland and Wales as well as between data sources 
(hospital admissions, death registries, and cancer registries).57 Where ICD codes contain trailing 
characters (such as dashes and X’s) or other additional characters that are not part of a valid code, 
UKB applies cleaning rules to strip the trailing characters. Dates of diagnoses were available for 
cancer diagnoses in cancer registries or for underlying or secondary causes of death (ICD10). 
“Spell and Episode Data” (admission and discharge) were not readily available for our current 
phenome-wide explorations. 

One of the main differences between MGI and the UKB ICD codes is the fact that MGI’s 
diagnoses are based on the ICD9-CM and ICD10-CM coding schemes, which are more extensive 
than the WHO’s original ICD coding schemes.58 For example, “C44.0” describes the non-
melanoma diagnosis “Other and unspecified malignant neoplasm of skin of lip” both in ICD10 
and in ICD10-CM. However, there are no ICD10 sub-codes, while the ICD10-CM coding scheme 
lists the following four sub-codes: "Unspecified malignant neoplasm of skin of lip" (C44.00), 
"Basal cell carcinoma of skin of lip" (C44.01), "Squamous cell carcinoma of skin of lip" (C44.02), 
and "Other specified malignant neoplasm of skin of lip" (C44.09). This additional level of detail 
allows for more granular phenotypes: in this case, the differentiation between basal cell carcinoma 
and squamous cell carcinoma subtypes. This circumstance is forwarded to the translation of ICD 
codes to PheWAS codes and is consequently observable in sample size comparisons between MGI 
and UKB, where PheWAS code subcategories of the latter have markedly fewer or no samples at 
all (e.g., the PheWAS codes for “Basal cell carcinoma” and “Squamous cell carcinoma” could not 
be generated from UKB’s ICD code data). 
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Now, we return to the case of obesity. The large difference in the ICD-derived and 
population proportions of obesity suggest some degree of misclassification of the obesity 
phenotype based on ICD codes alone. Figure S9 shows the distribution of (average) BMI values 
for subjects in UKB. Here, overweight is defined as a BMI between 25 and 30. According to these 
BMI values alone, we should have at least 21% of subjects being classified as having the obesity 
phenotype at some point during follow-up. In contrast, only 2.6% of subjects in UK Biobank 
actually receive ICD codes corresponding to obesity during follow-up.  

The MGI phenome does not appear to have such a large gap between the proportion of 
subjects receiving the obesity phenotype and the expected proportions. One explanation for this 
phenomenon in UKB is the use of different ICD coding schemes (ICD9 vs ICD10) as described 
above. For obesity, ICD9 includes codes (“V codes”) corresponding to BMI, and these codes are 
used in the definition of the obesity phenotype. In contrast, ICD10 does not include such BMI-
based codes to define obesity. Phenotypes in MGI are often based on ICD9 as many subjects have 
follow-up prior to implementation of ICD10, while phenotyping in UKB often relies on ICD10, 
which could partly explain the large differences in observed prevalences between these two 
biobanks. Additionally, ICD codes related to obesity may be under-reported (so some obese 
subjects don’t get the corresponding code) due to a lack of insurance re-imbursement tied to this 
code. This misclassification of PheWAS codes could in part explain the disparity between 
observed and population prevalences for obesity in UKB. 

These results provide further motivation for more advanced phenotyping procedures that 
incorporate additional information outside ICD coding, particularly for diseases in which we 
believe there will be a large degree of misclassification. 
 

Figure S9: BMI values for subjects in UK Biobank* 

 
*BMI calculated as the average BMI across 5 visits for which BMI was recorded, listed in UKB data fields 21001 and 23104.  
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Section S7. Relating Observed Phenotypes to Unobserved Truth 
 

A common type of “missing” data is the true phenotype state of each subject. We can view 
the sampling mechanism that gave rise to our study population and the mechanism behind 
phenotype misclassifications (which we might call the observation mechanism) in a missing data 
framework. The observed phenome in our sample is a function of the true phenome state (the 
“missing” data), the mechanism by which subjects are sampled, and the mechanism by which 
phenotypes are observed in the sample as shown in Figure S10, where arrows represent 
dependence.  

The probability that a particular subject has an observed phenotype will be related to 
whether the subject truly has the phenotype, but it may also be related to other factors such as the 
number of visits to the health care provider, the length of follow-up, the types of health services 
they receive, and other predictors. These other factors may also be correlated with the true disease 
status of the subject. For example, a healthier subject may “drop out” of the biobank and may 
instead seek health care from a tertiary care center. Figures S3-S5 present descriptions of the 
length of follow-up, number of unique observed phecodes, and number of visits by gender and 
observed cancer status in MGI. These figures demonstrate a relationship between these variables 
and whether the subject ever received an ICD code for cancer during follow-up. The sampling and 
observation mechanisms and their relationships to underlying disease status and patient 
characteristics may impact study inference. Further work should be done to explore the impact of 
different sampling and phenotyping mechanisms on statistical inference.  
 

Figure S10: Relationship between True and Observed Phenome 
 

 
  



 14 

Section S8. Obtaining and Comparing GWAS Results in the Michigan Genomics Initiative 
and the UK Biobank 
 
 In Figure 5 of the main paper, we compare GWAS results obtained using MGI and UKB 
for the “top SNPs” for several different phenotypes. We defined “top SNPs” as described below. 
GWAS results in MGI and UKB were obtained using the SAIGE method described in Zhou et al. 
(2018).59 We considered the following phenotypes: colorectal cancer (phecode 153), prostate 
cancer (phecode 185), breast cancer (phecode 174.1), and melanoma (phecode 172.1). 

For a given phenotype, the “top SNPs” were identified as follows. We first considered all 
SNPs listed as having reached genome-wide significance for a particular cancer phenotype by the 
NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas/). We then restricted our focus to SNPs 
identified by studies in European populations to ensure greater compatibility with the MGI and 
UKB populations, which are largely of recent European ancestry. No GWAS Catalog studies in 
the GWAS catalog used MGI data, but some studies may have incorporated UKB data into their 
analyses.  

We then compared GWAS results in MGI and UKB for the subset of SNPs identified by 
the GWAS catalog with available data in both MGI and UKB. SNPs with minor allele counts less 
than 3 in either dataset (MGI or UKB) were excluded as were SNPs with differences in the risk 
allele frequency greater than 0.15 between the two datasets. We further excluded SNPs in linkage 
disequilibrium, excluding SNPs with R2 greater than 0.1. This resulted in 25 SNPs for colorectal 
cancer, 75 SNPs for prostate cancer, 94 SNPs for breast cancer, and 28 SNPs for melanoma. We 
compare the resulting log-odds ratios from a logistic mixed model fit (from SAIGE) corresponding 
to the association between a given SNP and the phenotype of interest in a matched subset of the 
population.  
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Section S9. Sources for US and UK estimates  
 

Table S4. Sources for US and UK Estimates found in Table 2 
  US Source UK Source 
Psychiatric/Neurologic     
   Depression National Comorbidity Study Adult Psychiatric Morbidity Survey 

   Alzheimer’s Hebert et al. 2003 Alzheimer's Society 

   Anxiety* National Comorbidity Study Adult Psychiatric Morbidity Survey 

   Schizophrenia Jablensky 2000 Kirkbride et al. 2012 

   Bipolar Disorder National Comorbidity Study Adult Psychiatric Morbidity Survey 

Cardiovascular Disease   
   Atrial fibrillation CDC Majeed et al. 2001 

   Coronary heart disease CDC MMWR (10/14/2011) Bhatnagar et al. 2016 

   Myocardial infarction Yoon 2016 Bhatnagar et al. 2014 

Obesity CDC Parliament Briefing 2018 

Diabetes  CDC Diabetes UK 

Cancer   
   Colorectal SEER Cancer Research UK 

   Breast (female) SEER Cancer Research UK 

   Lung SEER Cancer Research UK 

   Pancreatic SEER Cancer Research UK 

   Melanoma of skin SEER Cancer Research UK 

   Prostate (male) SEER Cancer Research UK 

   Bladder SEER Cancer Research UK 

   Non-Hodgkins lymphoma SEER Cancer Research UK 

Abbrev: CDC, Centers for Disease Control and Prevention; MGI, Michigan Genomics Initiative; MMWR, Morbidity 
and Mortality Weekly Report; SEER, Surveillance, Epidemiology and End Results program; UKB, UK Biobank 
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